Skip to main content

Biology Ribble Endowment Seminar

"Life by a Thousand Cuts: Archaea as a Model for Evo-Devo Mechanosensing"

Bisson Selfie

Dr. Alex Bisson | Bisson Lab

Abstract:
Cells sense and respond to their physical surroundings, using organized molecular machinery
to convert mechanical environmental signals into biochemical information. Maybe more importantly, little is known about how cells' material properties co-evolve with their
environment. Using genetics, biophysics, and advanced microscopy tools, the Bisson Lab aims to understand archaeal cells' self-organization and behavior in response to physical cues. Here,
I will discuss our recent discovery of how specific mechanical confinement triggers the development from a unicellular to a tissue-like lifestyle similar to known primitive multicellular eukaryotes. This observation not only gives a new perspective over the emergence of complex multicellularity, but gives us the opportunity to compare the behavior and the genome of hundreds of cultivable archaeal species.

Bisson Graphic

Date:
Location:
THM 116

"The Role of Oxytocin Signaling Pathways in the Neuroimmune Response to Mate Bond Dissolution"

Glasper Selfie

Dr. Erica Glasper

Bio:
Erica R. Glasper graduated with honors from Randolph-Macon College in Ashland, Virginia, in 2002 with a major in Psychology and a minor in Biology. Initially pre-med, Erica discovered neuroscience during her freshman year at Randolph-Macon and was selected three times as a Summer Undergraduate Research Fellow. Her research experiences, aided by keen faculty mentorship, set her professional journey in motion. Erica went on to earn an M.A. and Ph.D. in Psychobiology and Behavioral Neuroscience from The Ohio State University. During her time as a postdoctoral scholar at Princeton University, she was supported by a fellowship from the UNCF/Merck Science Initiative and the National Institute on Aging at the National Institutes of Health. In 2011, Dr. Glasper joined the faculty at the University of Maryland – College Park, in the Department of Psychology, as an Assistant Professor. Her research in behavioral neuroendocrinology takes a multidisciplinary approach to understanding how experiences can shape our brains and resulting behavior. Following success as a researcher and educator, she was awarded tenure and promoted to the rank of Associate Professor. During the summer of 2021, the Glasper Lab returned to The Ohio State University, where she joined the Department of Neuroscience and the Institute for Behavioral Medicine Research within the College of Medicine as a tenured Associate Professor. She is excited about continued research success, and her return to the Buckeye State, using a combination of behavioral paradigms along with neuroendocrine, neuroanatomical, neuroimmune, neurochemical, and pharmacological techniques in three lines of research: 1) neurobiology of parenting, 2) neuroprotective role of rewarding social experiences, and 3) enduring consequences of paternal deprivation. Her research is currently funded by the NIH and The Ohio State University Wexner Medical Center.

Abstract:
Loss of a mate results in diverse impairments in bodily and psychological health. In this study, we tested the hypothesis that disrupting a mate bond, in the monogamous California mouse (Peromyscus californicus), would increase the neuroimmune response to a peripheral inflammatory stimulus (lipopolysaccharide [LPS]) through alterations in the oxytocin system. Adult (6-8 months old) male and female mice were exposed to three experimental conditions: 1) single housed, 2) mate bonded, or 3) mate-bonded separation. Mice were either injected with a vehicle (VEH) or an intraperitoneal injection of LPS (1mg/kg) and sacrificed 4-6 hours later.  While mate bond disruption did not increase anxiety-like behavior during open-field testing, physiological indices of mate bond disruption were observed. Males lost significantly more body weight following mate-bond separation, compared to the mate-bonded groups – this effect was not observed in females. Pro-inflammatory cytokine concentration (TNF and IL-1 beta) mRNA levels, measured by RT-qPCR in the hippocampus (HIPP) and hypothalamus (HYPO), were significantly enhanced in LPS-treated female mice following mate bond disruption, compared to the mate-bonded group. Mate bond dissolution did not exacerbate the LPS-induced increase in pro-inflammatory cytokines in males. Disruptions in oxytocin (OXT) signaling may contribute to the increased pro-inflammatory response in LPS-injected mice following mate bond dissolution, as HIPP mRNA levels for the oxytocin receptor (OXTR) in separated males and females were significantly decreased. Independent of endotoxic challenge, TNF and OXTR mRNA levels in separated mice were negatively correlated (as OXTR expression went down, TNF expression went up). Together, these results suggest that the effects of mate bond disruption in neuroimmune responsivity may involve alterations to OXT signaling. 

Date:
Location:
THM 116

"The Problem of Time in Climate Change Ecology"

Wolkovich Selfie

Dr. Elizabeth Wolkovich | Wolkovich Lab

Bio
Elizabeth Wolkovich is an Associate Professor in Forest and
Conservation Sciences and Canada Research Chair at the University of British Columbia. She runs the Temporal Ecology Lab, which focuses on understanding how climate change shapes plants and plant communities, with a focus on shifts in the timing of seasonal development (e.g., budburst, flowering and fruit maturity)---known as phenology. Her lab both collects new data on forest trees and winegrapes and collates existing data to provide global estimates of shifts in phenology with warming from plants to birds and other animals, and to understand how human choices will impact future winegrowing regions. Her research benefits from an interdisciplinary team of collaborators from agriculture, biodiversity science, climatology, evolution and viticulture, as well as from shared long-term datasets from across North America and Europe.

Abstract
Forty years ago ecology became increasingly focused on spatial structure and pattern, as researchers realized how fundamentally habitat loss and fragmentation reshapes populations and communities. A generation later, with spatial ecology firmly established as a cross-disciplinary, multi-scale field, anthropogenic climate change has forced ecology to revisit the importance of time. As warming stretches growing seasons around the globe, populations, species, communities and ecosystems are responding in turn. In this talk I outline two major challenges of temporal ecology with anthropogenic warming: stretched time and accelerated time. Focusing on
plant phenology I show how longer growing seasons may re-assemble communities: first I focus on examples from invasion biology then I build to a more general theory. Next I show how how warming may make many biological processes that are dependent on thresholds appear to slow as warming continues. This is because warming accelerates biological time while calendar time stands still. I close by reviewing preliminary results that merge phenological cues with trait ecology to show that forests may assemble via their spring phenology.

Watch the seminar here

Date:
Location:
THM 116

"The Molecular Circadian Clock and the Impact of Disrupted Rhythms and Sleep on Health and Disease"

Turek Selfie

Dr. Fred Turek

Bio:
Fred W. Turek, PhD received his undergraduate degree in the biological sciences from Michigan State University in 1969, and his PhD from Stanford University in 1973 where he carried out research on circadian and seasonal rhythms.  After postdoctoral training at the University of Texas at Austin, he took a faculty position at Northwestern University where he served as the Chair of the Department of Neurobiology & Physiology from 1987-98.  Dr. Turek is the founder and current Director of the Center for Sleep and Circadian Biology at Northwestern University.  Dr. Turek was the founding president of the Society for Research on Biological Rhythms (SRBR) and served in this capacity for six years.

Watch the seminar here!

 

 

Date:
Location:
THM 116

"Genetic, Social, and Developmental Drivers of Within-population Behavioral Variation"

Laskowski Selfie

Dr. Kate Laskowski | Laskowski Lab

Bio:
Dr. Kate Laskowski is interested in investigating how evolution has shaped the developmental processes that generate behavioral individuality. She does this by generating replicate individuals and groups of the naturally clonal fish, the Amazon molly, allowing her to “replay the developmental clock.” Kate obtained her Bachelor’s of Science at the University of Maryland Baltimore County and her PhD from the University of Illinois where she worked under Alison Bell. She then moved to Berlin Germany to work at the Leibniz Institute of Freshwater Ecology & Inland Fisheries with Max Wolf and Jens Krause before joining the Department of Evolution & Ecology at the University of California Davis in 2019.  

Abstract:
Individual behavioral variation is ubiquitous across the animal kingdom. Explaining the continued generation and maintenance of such variation is a fundamental goal in behavioral and evolutionary ecology. Our research tests key predictions drawn from theoretical models about how genetic correlations and developmental processes can drive the emergence of consistent individual behavioral variation. This work has shown that competition for, and acquisition of, resources may play key roles in shaping behavior variation both on evolutionary and developmental timescales. Using the clonal Amazon molly and an innovative high-resolution tracking system we can follow and manipulate individual experience with salient environmental cues such as resource availability and relative risk. We can track the behavioral development of individual fish from birth in, up to now, unprecedented detail, allowing us to pinpoint exactly when and in response to which cues individuality emerges. Our results highlight that in order to fully explain the presence of individual behavioral variation we need a comprehensive conceptual framework that explicitly accounts for how natural selection has shaped the developmental process.
 

Watch the seminar here!

Laskowski Fish

Date:
Location:
THM 116

"Be Fruitful and Multiply: How Reproductive Capacity Evolves"

Selfie

Dr. Cassandra Extavour | Extavour Lab

Bio
Cassandra Extavour is a native of Toronto, where she attended the University of Toronto Schools and went on to obtain an Honors BSc at the University of Toronto with a specialist in Molecular Genetics and Molecular Biology, a Major in Mathematics and a Minor in Spanish. She obtained her PhD with Antonio Garcia Bellido at the Severo Ochoa Center for Molecular Biology at the Autonomous University of Madrid. She performed postdoctoral work first with Michalis Averof at the Institute for Molecular Biology and Biotechnology in Crete, Greece, and subsequently with Michael Akam at the University of Cambridge. At Cambridge she received a BBSRC Research Grant and became a Research Associate in the Department of Zoology. In 2007 she established her independent laboratory as an Assistant Professor in the Department of Organismic and Evolutionary Biology at Harvard University, where she was promoted to Associate Professor in 2011 and to Full Professor in 2014. In 2021 she became a Howard Hughes Medical Institute Investigator, and was named the Timken Professor of Organismic and Evolutionary Biology and of Molecular and Cellular Biology at Harvard. Click here to read more.

Abstract:
Reproduction is a crucial fitness parameter, essential for species survival and evolution. Despite its importance, there is massive variation in reproductive capacity across animals, even between very closely related species. Moreover, reproductive capacity can be modified by environmental and ecological factors. Our aim is to understand how genetic variation interacts with ecological variation to regulate distinct and reproductive capacities between species, to determine whether and how ecological variation contributes to the evolution of adaptive variation in reproductive capacity. Our approach takes advantage of the fact that in sexually reproducing animals, the number of offspring that an individual can produce is often predicted by the anatomy of the ovary or testis, the sites of gamete production. In female insects, ovaries are subdivided into egg-producing units called ovarioles, which are generated in species-specific numbers during development. Ovariole number, and correspondingly reproductive capacity, can vary by more than four orders of magnitude across insects. I will discuss our findings on the mechanisms of genetic and environmental control of ovariole number in closely and distantly related insect species, and their implications for the broader questions of the genetic and developmental basis of fitness-relevant evolutionary change.

Date:
Location:
THM 116

14th Annual Thomas Hunt Morgan Lecture: "Human Evolution and Adaptation in Africa"

Click here for more information about Dr. Sarah Tishkoff.

Abstract:

Africa is thought to be the ancestral homeland of all modern human populations.  It is also a region of tremendous cultural, linguistic, climatic, and genetic diversity.   Despite the important role that African populations have played in human history, they remain one of the most underrepresented groups in human genomics studies. A comprehensive knowledge of patterns of variation in African genomes is critical for a deeper understanding of human genomic diversity, the identification of functionally important genetic variation, the genetic basis of adaptation to diverse environments and diets, and for reconstructing modern human origins. African populations practice diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists, and agro-pastoralists) and live in diverse environments with differing pathogen exposure (tropical forest, savannah, coastal, desert, low altitude, and high altitude) and, therefore, are likely to have experienced local adaptation. In this talk I will discuss results of analyses of genome-scale genetic variation in geographically, linguistically, and ethnically diverse African populations in order to reconstruct human evolutionary history in Africa, African and African American ancestry, as well as the genetic basis of adaption to diverse environments.

Invite

Date:
Location:
WT Young Library Auditorium

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Leveraging Animal Behavioral Interactions to Learn About Cognition & Social Dynamics"

Selfie

 

 

Dr. Elizabeth Hobson | Hobson Lab

Bio
Dr. Hobson received her PhD from New Mexico State University and was awarded two independent postdoctoral fellowships, the first at NIMBioS (the National Institute for Mathematical and Biological Synthesis) and the second at the Santa Fe Institute. She started her lab at the University of Cincinnati in Fall 2019 and is currently an Assistant Professor.

Abstract:
In many social species individuals create their social worlds through interaction decisions and are then subject to and constrained by these social constructs, which can affect an individual’s future actions. Understanding how much individuals “know” about their social worlds is critical in understanding these potential feedbacks. However, it is difficult to determine how much information individuals have about the social structures in which they live. In this talk, I summarize several ways my group is addressing these questions by combining empirical experiments with computational approaches to provide insight into cognition through social decisions. I highlight new work on parakeet aggression and dominance hierarchies to illustrate this approach. I show evidence that parakeet rank is unlikely due to individual characteristics and that group-level social dominance patterns can be plastic and can respond to group membership changes. Finally, I show how parallel or related experiments can allow for comparative analyses across species. These approaches, and a taxonomically broad perspective, provide new opportunities to investigate the effect of social information on individual behavior within conflict, and has the potential to provide rigorous evidence for the evolutionary patterns underlying social cognition.

Watch the seminar here!

 

Date:
Location:
THM 116

"Overwintering in the Arctic: Animal Strategies for Surviving the Long, Cold, and Dark"

SelfieDr. Brian Barnes

Bio:
Dr. Barnes is currently a Professor of Zoophysiology with the Institute of Arctic Biology at the University of Alaska in Fairbanks. He's also the Director of Alaska INBRE, an NIH capacity building program in biomedical research and also the Science co-Director at Toolik Field Station. He participated in summer workshops involving biological rhythms at Hopkins Marine Station. He has a  PhD in Zoology from the University of Washington where Jim Kenagy was his advisor. Dr. Barnes received his Post-doc in Psychology and Zoology with Irv Zucker and Paul Licht as advisors. He began as Assistant Professor at the University of Alaska in 1986.

Abstract:
In Alaska, winters begin early, last seemingly forever, are very cold, snowy and dark, as well as extremely beautiful, quiet, and serene. This talk will review the physiological and behavioral strategies available to animals for surviving and coping with arctic winters, including cryobiology in insects, freeze tolerance in frogs, and hibernation in ground squirrels and bears. Using data logging and advanced telemetry, the locations, behavior, sleep, circadian rhythms, cardiovascular patterns, and thermoregulation of animals were recorded as they overwinter under natural conditions.

Cucujus beetle larvae may not freeze at temperatures below -80C, wood frogs freeze almost solid and survive; arctic ground squirrels lose track of time, become torpid while colder than ice but warm to sleep, even as black bears continuously doze, only occasionally snore, and their hearts beat in a syncopated rhythm. Little is known about the genetic and molecular basis of hibernation, but discovering its mechanisms could lead to novel clinical therapies and escape strategies in humans.

Watch the seminar here!

Date:
Location:
THM 116
Subscribe to Biology Ribble Endowment Seminar